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Abstract
We study soliton solutions to the DKP equation which is defined by the Hirota
bilinear form, {(−4DxDt + D4

x + 3D2
y

)
τn · τn = 24τn−1τn+1,(

2Dt + D3
x ∓ 3DxDy

)
τn±1 · τn = 0

n = 1, 2, . . . ,

where τ0 = 1. The τ -functions τn are given by the Pfaffians of a certain
skew-symmetric matrix. We identify a one-soliton solution as an element of
the Weyl group of D-type, and discuss a general structure of the interaction
patterns among the solitons. Soliton solutions are characterized by a 4N × 4N

skew-symmetric constant matrix which we call the B-matrix. We then find that
one can have M-soliton solutions with M being any number from N to 2N − 1
for some of the 4N × 4N B-matrices having only 2N nonzero entries in the
upper-triangular part (the number of solitons obtained from those B-matrices
was previously expected to be just N).

PACS numbers: 02.30.Jr, 02.30.Ik, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We study soliton solutions of the DKP equation [1, 3, 9],{(−4DxDt + D4
x + 3D2

y

)
τn · τn = 24τn−1τn+1,(

2Dt + D3
x ∓ 3DxDy

)
τn±1 · τn = 0

n = 1, 2 . . . , (1.1)

where τ0 = 1, and Dx,Dy and Dt are the usual Hirota derivatives. For each n, the variables
u = 2(ln τn)xx and v± = τn±1/τn define the coupled KP equation (see for example [3]),{

(−4ut + uxxx + 6uux)x + 3uyy = 24(v+v−)xx,

2v±
t + v±

xxx + 3uv±
x ∓ 3

(
v±

xy + v± ∫ x
uy dx

) = 0.
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This set of equations admits a class of particular solutions, called soliton solutions, similar to
those of the KP equation (see for example [5]), and in this paper we describe some properties
of those solutions.

Remark 1.1. The DKP equation was given as a first member of the DKP hierarchy in [6].
In [3], the coupled KP equation was introduced as an extension of the KP equation whose
solutions are given by the Pfaffian form. The DKP equation was rediscovered as the Pfaff
lattice describing the partition function of a skew-symmetric matrix model in [1, 7], and was
also found as an orbit of some infinite-dimensional Clifford group action in [9].

The τn-functions are given by the Pfaffians of 2n×2n skew-symmetric matrices Qn whose
entries are denoted by Qi,j for 1 � i < j � 2n with Qj,i = −Qi,j ,

τn = Pf(Qn) =
∑

1=i1<···<in<2n
ik<jk,k=1,...,n

σ (i1, j1, . . . , in, jn)Qi1,j1Qi2,j2 · · ·Qin,jn
. (1.2)

Each coefficient σ(i1, j1, . . . , in, jn) gives a sign corresponding to the parity of the
permutation,

σ := sign

(
1 2 · · · 2n − 1 2n

i1 j1 · · · in jn

)
.

Here the elements Qi,j satisfy
∂

∂tk
Qi,j = Qi+k,j + Qi,j+k, k = 1, 2, . . . ,

where t1 = x, t2 = y, t3 = t and others are the symmetry parameters. A realization of Qi,j is
given by [3],

Qi,j =
∣∣∣∣φ(i−1) φ(j−1)

ψ(i−1) ψ(j−1)

∣∣∣∣ , for i < j,

where φ(k) = ∂kφ/∂xk (the same for ψ(k)) and the functions φ and ψ satisfy the same equations
for x and t evolutions,

∂φ

∂y
= ∂2φ

∂x2
,

∂φ

∂t
= ∂3φ

∂x3
.

For an example of a finite-dimensional solution, we consider

φ(x, y, t) =
M∑

m=1

amEm(x, y, t), ψ(x, y, t) =
M∑

m=1

bmEm(x, y, t), (1.3)

with some constants am, bm for m = 1, . . . , M . The function Em(x, y, t) is the exponential
function,

Em(x, y, t) := eθm with θm(x, y, t) = pmx + p2
my + p3

mt + θ0
m,

where pm and θ0
m are arbitrary constants, and throughout this paper we assume the parameters

p := (p1, p2, . . . , pM) to be ordered as

p1 < p2 < · · · < pM. (1.4)

With those φ and ψ , the elements Qi,j , 1 � i < j � 2n become

Qi,j =
∑

1�k<l�M

bk,l

∣∣∣∣∣E
(i−1)
k E

(j−1)

k

E
(i−1)
l E

(j−1)

l

∣∣∣∣∣ ,
=

∑
1�k<l�M

bk,l(pkpl)
i−1

(
p

j−i

l − p
j−i

k

)
Ek,l, (1.5)

where bk,l = akbl − albk , and Ek,l := EkEl = exp(θk + θl).
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As a generalization of this form of Qi,j , we consider an arbitrary M ×M skew-symmetric
matrix B = (bk,l)1�k,l�M . We then note that the 2n × 2n matrix Qn in the τ -function τn can
be expressed as

Qn(x, y, t) = En(x, y, t)BEn(x, y, t)T , (1.6)

where En is a 2n × M matrix with its transpose ET
n , and it is given by

En =




E1 E2 · · · EM

...
...

. . .
...

E
(2n−1)
1 E

(2n−1)
2 · · · E

(2n−1)
M


 .

In this paper, we discuss a classification problem of several soliton solutions given by (1.6) in
terms of the B-matrix. Note here that M > 2 for n � 1, since the case with M = 2 gives a
trivial solution, i.e. τ1 = Q1,2 = b1,2(p2 − p1)E1E2 and u = 2(ln τ1)xx = 0. Also note that
one needs M > 2n for u = 2(ln τn)xx �= 0.

One should also note that if τn+1 = 0 (i.e., v+ = 0), the corresponding solution satisfies
the KP equation. This condition can be of course obtained from the structure of the B-matrix.
For example, if we take M = 3, then τ2 vanishes identically (the size of the Pfaffian is 4 × 4,
but the independent exponentials are 3 or less). This implies that τ1 with M = 3 gives a
solution of the KP equation, and it gives either one KP soliton solution or a resonant Y-shape
KP soliton: with a 3 × 3 B-matrix, we have

τ1 = Q1,2 = b1,2(p2 − p1)E1E2 + b1,3(p3 − p1)E1E3 + b2,3(p3 − p2)E2E3.

The function u = 2(ln τ1)xx gives one KP soliton solution if one of bi,j is zero (with others
being positive), and Y-shape KP soliton if all bi,j are positive. For example, with b1,2 = 0, we
have τ1 = (b1,3(p3 − p1)E1 + b2,3(p3 − p2)E2)E3 which leads to

w(x, y, t) := ∂

∂x
ln τ1 = p3 +

1

2
(p1 + p2) +

1

2
(p2 − p1)tanh

1

2
(θ2 − θ1). (1.7)

The asymptotic values of w then take

w(x, y, t) →
{
p1 + p3, for x → −∞
p2 + p3, for x → ∞.

Note here that the one soliton exchanges the asymptotic values of (1, 3) := p1 + p3 and
(2, 3) := p2 +p3, that is, this one soliton permutes the numbers, (1) ↔ (2). We then label one
soliton of the KP equation as an element of the permutation group W ; in this case W = S3,
the symmetry group of order 3. We denote the one soliton solution (1.7) by [1 : 2], and call
this type of soliton an A-soliton (‘A’ stands for type A Lie algebra which is the underlying
symmetry algebra for the KP equation). In general, we denote one A-soliton by [i : j ], if the
function w exchanges pi ↔ pj with pi < pj . We sometimes identify [i : j ] as an element of
the symmetry group.

A generic solution of the DKP equation is then obtained for M � 4. In particular,
we obtain the one soliton solution in the case M = 4 with the B-matrix having just two
nonzero elements in the upper-triangular part. For example, we consider the B-matrix having
b1,2 = 1, b3,4 = 1 and all others bi,j = 0 for i < j . Then

τ1 = Q1,2 = (p2 − p1)E1E2 + (p4 − p3)E3E4.

This gives

w(x, y, t) := ∂

∂x
ln τ1 = 1

2

4∑
k=1

pk +
1

2
(p3 + p4 − p1 − p2)tanh

1

2
(θ34 − θ12) (1.8)
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with θij = θi + θj + ln |pi − pj |. For each asymptotic of x → ±∞, one of the exponential
terms in the τ -function becomes dominant. In the case of (1.8), we have

w(x, y, t) →
{
p1 + p2, as x → −∞,

p3 + p4, as x → ∞.

Thus, this one D-soliton exchanges (1, 2) ↔ (3, 4) with the values of w, where (i, j) :=
pi + pj . This indicates a Weyl action of D-type: for example, π1,2 ∈ WD may be expressed as

π1,2 · (i1, i2 : i1̄, i2̄) = (i2, i1 : i2̄, i1̄), i1 = 1, i2 = 3, i1̄ = 2, i2̄ = 4.

We denote this D-soliton by [1, 2 : 3, 4]. Then identifying [1, 2 : 3, 4] with the permutation of
the pairs, (1, 2) ↔ (3, 4), one has the relation [1, 2 : 3, 4] = [1 : 3] · [2 : 4] = [1 : 4] · [2 : 3],
where [i : j ] is the permutation (i) ↔ (j) of the A-soliton. This relation implies a resonant
bifurcation of one D-soliton into two A-solitons (see section 4). Since one D-soliton has four
pi parameters, we need to have M = 4N parameters to describe the N D-soliton solution as a
solution given by the τ -function τN . However, we show in this paper that the 4N -parameter
solution can contain up to 2N −1 number of D-solitons (this is quite different from the solitons
of the KP equation).

In this paper, we study soliton solution of the DKP equation consisting of those A- and
D-type soliton solutions. In section 2, we give a general structure of the τ -functions. Then
in section 3, we discuss some details of one D-soliton solutions given by the B-matrix of size
4 × 4. Here we also classify the soliton solutions obtained by 4 × 4 B-matrices. In section 4,
we present the soliton solutions for the case of 8 × 8 B-matrices, and classify the soliton
solutions consisting of only D-types. It turns out that the case with 8 × 8 B-matrix can have
either two or three D-solitons depending on the values of the parameters {pi : i = 1, . . . , 8}.
The generic solution given by the B-matrix having all nonzero entries is then given by four
A-solitons. Finally we discuss the general case of 4N × 4N B-matrices, i.e. M = 4N , in
section 5. Then we show that the number of D-solitons for those B-matrices having 2N

nonzero entries in the upper-triangular part can be any number from N to 2N − 1, contrary to
the previous study (see [5]) where the number of D-soliton is expected to be just N.

In [8], we showed that the N-soliton solutions of the KP equation can be classified
by the Schubert decomposition of the Grassmannian Gr(N, 2N). We also expect that
N-soliton solutions of the DKP equation can be classified by the similar decomposition of
the orthogonal Grassmannian OGr(M, 2M) for some M. However, in this paper, we just
present elementary feature of the N-soliton solutions based on the Pfaffian structure of the
τ -function, which is already complicated but has several interesting aspects. We plan to discuss
a classification problem based on the geometric structure of the orthogonal Grassmannian in
a future communication.

2. Structure of the τ -functions

We first note that the τ -function (1.2) with the Qn-matrix (1.6) has the following expansion
theorem, i.e. the Pfaffian version of the Binet–Cauchy theorem (see [4] for the details).

Lemma 2.1. The τ -functions of (1.2) with (1.6) can be expressed by

τn =
∑

1�i1<···<i2n�4N

Pf(B(i1, . . . , i2n))Det(E(i1, . . . , i2n)),
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where E(i1, . . . , i2n) is the 2n × 2n submatrix of the 2n × 4N matrix En,

E(i1, . . . , i2n) :=




Ei1 · · · Ei2n

...
. . .

...

E
(2n−1)
i1

· · · E
(2n−1)
i2n




and B(i1, . . . , i2n) is the 2n × 2n skew-symmetric submatrix of the 4N × 4N matrix B,

B(i1, . . . , i2n) =




0 bi1,i2 · · · · · · bi1,i2n

0
. . . · · · bi2,i2n

. . .
. . .

...

0 bi2n−1,i2n

0




.

The lower-triangular part is given by bil ,ik = −bik,il , and is left blank. Also Det(E) is given
by the Wronskian determinant,

Det(E(i1, . . . , i2n)) = Wr
(
Ei1 , . . . , Ei2n

) =
∏
m<n

(
pin − pim

)
exp


 2n∑

j=1

θij


 > 0.

The sign is due to the order (1.4), i.e. p1 < p2 < · · · < p4N .

From this formula of the τ -function, the soliton solutions are completely determined by
the nonzero coefficients of the Pfaffians Pf(B(i1, . . . , i2n)), which are the Plücker coordinates
of the orthogonal Grassmannian Gr(2n, 4N). For example, if all the coefficients are positive,
then we have (2n, 4N − 2n)-soliton solution in u(x, y, t), that is, we have 2n outgoing line
solitons in y → ∞ and 4N − 2n incoming line solitons in y → −∞ (see [2]). As we can see
from [8] that in particular if n = N we have a 2N -soliton solution similar to the KP equation,
i.e. all 2N solitons are A-solitons, and all the interactions are of T-type. Then the main purpose
of this paper is to identify soliton solution of the DKP equation with a certain combination of
nonzero coefficients.

Example 2.1. As the simplest example, the Pfaffian Pf(B(i1, . . . , i4)) is given by

Pf(B(1, . . . , 4)) = b1,2b3,4 − b1,3b2,4 + b1,4b2,3.

Note here that if the indices in each term have partial overlap, then the product takes the
minus sign, e.g. (1, 3) and (2, 4). This is a key for the classification of four A-solitons (see
section 4).

From lemma 2.1, one should note that each term in τn in (1.2) is given by the product of
2n exponentials Ek , i.e.

2n∏
j=1

Eij =
n∏

k=1

Eik,jk
,

where {ij |j = 1, . . . , 2n} = {ik, jk|ik < jk, k = 1, . . . , n}, and they are the indices for the
elements of the B-matrix, i.e. bik,jk

. As we will show, this structure of the τ -functions will be
important to identify a soliton solution in the asymptotics y → ±∞.
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2.1. The B-matrix

Since the coefficients of the τ -function are determined by the B-matrix, we give some remarks
on the structure of the matrix. For a generic 4N × 4N skew-symmetric matrix B, i.e.
B ∈ so(4N), there is a decomposition called skew-Borel decomposition [1],

B = LJ0L
T ,

where L ∈ G, the group of invertible elements in the set of lower-triangular matrices with
nonzero 2 × 2 blocks proportional to identity along the diagonal, i.e.

G :=







a1 0 · · · · · · 0 0
0 a1 · · · · · · 0 0

∗ ∗ . . .
. . .

...
...

∗ ∗ . . .
. . .

...
...

∗ ∗ ∗ ∗ a2N 0
∗ ∗ ∗ ∗ 0 a2N




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2N∏
i=1

ai �= 0




.

The matrix J0 is the 4N × 4N skew-symmetric matrix whose 2 × 2 diagonal blocks are given
by

( 0 1
−1 0

)
and all the other entries are zero, i.e.

J0 :=




0 1 0
−1 0

. . .
. . .

. . .
. . .

0 1
0 −1 0




. (2.1)

A non-generic element of so(4N) may be obtained by a permutation matrix π ∈ S4N with
π−1 = πT (i.e., π ∈ O(4N)), that is, we have

B = πLJ0L
T π−1 = (πL)J0(πL)T ,

where L is not a generic element in G.

Example 2.2. Consider the case N = 1 (4 × 4 B-matrix). Then the generic element B can be
expressed by B = LJ0L

T with

L =




a 0 0 0
0 a 0 0
b d f 0
c e 0 f


 ∈ G.

Then the matrix B is given by

B = LJ0L
T =




0 a2 ad ae

0 −ab −ac

0 −cd + be + f 2

0


 . (2.2)

(We leave the lower-triangular part blank for the skew-symmetric matrix.) If a skew-symmetric
matrix has zero at (1, 2)-entry (i.e., b1,2 = 0) and others are nonzero, such a matrix, say B1,
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cannot be expressed in this form. In this case, one can consider the form B = (πL)J0(πL)T

with

π = s2,3 :=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , L =




a 0 0 0
0 a 0 0
b d f 0
0 e 0 f


 .

The matrix B1 is then given by

B1 = (s2,3L)J0(s2,3L)T =




0 0 a2 ae

0 ab be + f 2

0 −ad

0


 . (2.3)

In particular, with L = Id, the 4 × 4 identity matrix, we have B1 = J1 defined by

J1 :=




0 0 1 0
0 0 1

0 0
0


 . (2.4)

The other non-generic element of the B-matrix, say B2, having b1,2 = b1,3 = 0 can be
expressed by B2 = (s2,4L)J0(s2,4L)T ,

B2 =




0 0 0 a2

0 f 2 ac

0 −ab

0


 , (2.5)

with

s2,4 =




1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0


 and L =




a 0 0 0
0 a 0 0
b 0 f 0
c 0 0 f


 .

In particular, for L = Id we have B2 = J2 defined by

J2 :=




0 0 0 1
0 1 0

0 0
0


 . (2.6)

In the following section we show that those skew-symmetric matrices J0, J1 and J2 define all
the one D-soliton solutions.

In general, one can start with J0 to define the τ -functions, that is, τn = Pf(Qn) with
Qn = EnJ0ET

n of (1.6). Then consider a generalization of the Qn-matrix by replacing J0 with
Jπ := πJ0π

−1 for some π ∈ S4N ∩ O(4N). The role of π can be understood as the change
of order of the column vectors in En, i.e.

Enπ := (E1, E2, . . . , E4N)π = (±Eπ(1),±Eπ(2), . . . ,±Eπ(4N)),

where the column vector Ek := (
Ek,E

(1)
k , . . . , E

(2n−1)
k

)T
, and π(k) indicates the permutation

k → π(k). The signs in π should be chosen properly so that the new τ -function
τ ′
n = (Enπ)J0(Enπ)T is sign definite, i.e. non-singular (see section 4 for more details).
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3. One D-soliton and two A-solitons

Here we discuss the cases with the 4 × 4 skew-symmetric matrix B, and show that the cases
include one D-soliton and two A-solitons.

3.1. D-solitons

In the introduction, we show an example of one D-soliton (1.8) whose τ -function is given by
τ1 = Pf

(
E1J0ET

1

)
with J0 in (2.1) and E1 in lemma 2.1 for N = 1. This D-soliton is denoted as

[1, 2 : 3, 4], since it exchanges the asymptotic values of w = (ln τ1)x as (1, 2) ↔ (3, 4) (recall
(i, j) := pi + pj ). A general form of the one D-soliton can be expressed as [i1, j1 : i2, j2],
where i1 < i2 and ik < jk . There are three cases,

[1, 2 : 3, 4], [1, 3 : 2, 4], [1, 4 : 2, 3],

which correspond to the D-solitons generated respectively by the skew-symmetric matrices,
J0, J1 and J2 in example 2.2 as the B-matrices. Recall here that the soliton label [i, j : k, l]
indicates the nonzero elements bi,j and bk,l in the B-matrix. Namely, for the Jk-matrix with
nonzero entries with 1 at (i1, j1) and (i2, j2) in the upper-triangular part, the τ -function is
given by

τ1 = Q1,2 = (
pj1 − pi1

)
Ei1Ej1 +

(
pj2 − pi2

)
Ei2Ej2 . (3.1)

Then the function w = (ln τ1)x is

w(x, y, t) := ∂

∂x
ln τ1 = 1

2

4∑
k=1

pk +
1

2

(
pi2 + pj2 − pi1 − pj1

)
tanh

1

2

(
θi2,j2 − θi1,j1

)
(3.2)

with θi,j = θi + θj + ln |pi − pj |. For each asymptotic of x → ±∞, one of the exponential
terms in the τ -function (3.1) becomes dominant, and we have

w(x, y, t) →
{
pi1 + pj1 , as x → −∞,

pi2 + pj2 , as x → ∞.

Thus one D-soliton exchanges (i1, j1) ↔ (i2, j2) with the values of w, and is denoted by
[i1, j1 : i2, j2], as an element of the Weyl group of D-type.

One soliton solution u = 2wx is a plane wave having the form:

u(x, y, t) = φ(kxx + kyy − ωt).

Let us denote the wavenumber k = (kx, ky) and the frequency ω for (3.2) by k[i1, j1 : i2, j2]
and ω[i1, j1 : i2, j2], respectively, i.e.{

k[i1, j1 : i2, j2] = (
pi2 + pj2 − pi1 − pj1 , p

2
i2

+ p2
j2

− p2
i1

− p2
j1

)
,

ω[i1, j1 : i2, j2] = −(
p3

i2
+ p3

j2
− p3

i1
− p3

j1

)
.

The slope (or velocity) of the soliton in the x–y plane is given by c := dx/dy = −ky/kx =
−(

p2
i2

+ p2
j2

− p2
i1

− p2
j1

)/(
pi2 + pj2 − pi1 − pj1

)
. The peak of the soliton then determines the

line in the x–y plane given by the equation θi1,j1(x, y, t) = θi2,j2(x, y, t) for each t.
We also note that the velocity c of one D-soliton can be obtained as follows: first note

that a D-soliton of [i, j : k, l] gives a line θi,j = θk,l . Then setting x = cy for this equation,
we have θi,j = ui,j (c)y + θ0

i,j with

ui,j (c) := (pi + pj )c + p2
i + p2

j . (3.3)

Then taking the limit |y| → ∞ for the equation θi,j = θk,l , the velocity c of the D-soliton
is determined by ui,j (c) = uk,l(c), i.e. the intersection point of ui,j and uk,l . In figure 1, we
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-5 5

-10

10

20

c
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Figure 1. The functions ui,j (c) and the velocities of solitons. The intersection point between
ui,j and uk,l gives the velocity of D-soliton [i, j : k, l]. The solid dots give the velocities of
D-solitons, and the open circles give the velocities of A-solitons, e.g. the velocity of [1 : 2]-soliton
is c = −(p1 + p2) which is given by either u1,4 = u2,4 or u1,3 = u2,3.

show ui,j (c) of (3.3) for the parameter p := (p1, . . . , p4) = (−2,−1, 0, 3). Each solid dot
gives the velocity of one D-soliton, and each open circle gives the velocity of an A-soliton,
e.g. the point at u1,2 = u1,3 gives the velocity of [2 : 3]-soliton. This implies that if b1,2 and
b1,3 are only nonzero elements in the B-matrix, then τ1 gives one A-soliton of [2 : 3], i.e.
τ1 = (b1,2(p2 − p1)E2 + b1,3(p3 − p1)E3)E1. Figure 1 can be also used to determine the
solitons appearing from the τ1-function in the asymptotics |y| → ∞. For example, if bi,j > 0
for all 1 � i < j � 4, then τ1 contains all six terms EiEj with i < j . Then from figure 1, we
have two A-soliton solutions of T-type, [1 : 3] and [2 : 4] (see below for the details).

3.2. Two A-solitons

One D-soliton can be considered as a degenerate case of two A-solitons (recall that A-soliton
exchanges single letter as [i : j ], while D-soliton exchanges two letters as [i, j : k, l]).
Namely, D-soliton of [i, j : k, l] can be considered as the ‘product’ of two A-solitons of [i : k]
and [j : l] or [i : l] and [j : k], i.e. [i, j : k, l] = [i : k] · [j : l] = [i : l] · [j : k] as the
product of two permutations. Then two A-soliton solutions can be obtained by adding extra
exponential terms, i.e. extra nonzero entries to the B-matrix. If one adds just one term, then
we have a Y-shaped solution satisfying the resonant condition. For example, for the B-matrix
having two nonzero entries bi1,j1 and bi2,j2 in the upper-triangular part, if we add a nonzero
entry at either (i1, j2) or (i2, j2), we obtain a resonant Y-shaped soliton with the resonant
condition, {

k[i1 : i2] + k[j1 : j2] = k[i1, j1 : i2, j2],

ω[i1 : i2] + ω[j1 : j2] = ω[i1, j1 : i2, j2].

Here the wavenumber k[i : j ] and the frequency ω[i : j ] are for the one soliton solution of
the KP equation, i.e.

k[i1 : i2] = (
pi1 − pi2 , p

2
i1

− p2
i2

)
, ω[i1 : i2] = p3

i1
− p3

i2
,

In figure 2 (see also example 3.1 below), we show the resonant bifurcation of [1, 2 : 3, 4]-
soliton into two A-solitons of [1 : 3] and [2 : 4]. Those solitons can be found from figure 1.
For example, in the left figure of figure 2, we have u1,2, u2,3 and u3,4 from the nonzero entries
of the B-matrix. Then the three intersection points of the graphs of those ui,j in figure 1
give one D-soliton (solid dot) and two A-solitons (open circles). Figure 1 also shows that the
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Figure 2. Resonant bifurcations of the D-soliton [1, 2 : 3, 4]. Each region, (i, j), corresponds to
a dominant exponential marked by the element bi,j . For example, with b2,3 �= 0, [1, 2 : 3, 4]-D-
soliton bifurcates into [1 : 3] and [2 : 4] A-solitons as y → −∞ (top figure). Those solitons can
be found from figure 1.

solid dot indicates the pair of dominant exponentials (E1,2, E3,4) for the [1, 2 : 3, 4]-soliton
as y → ∞, while the open circles show the dominant pairs (E1,2, E2,3) for the [1 : 3]-soliton
and (E2,3, E3,4) for the [2 : 4]-soliton as y → −∞.

Since there are at least four disconnected regions in the x–y plane divided by two line
solitons, one needs to add at least two extra nonzero (positive) entries. Figure 2 shows the
resonant bifurcations of a D-soliton into two A-solitons. Two-soliton solution in this figure is
a new T-type (referred to as TD-type) which does not exist in the KP equation (i.e., v± �= 0).
The T-type of the KP equation can be obtained by a B-matrix with Det(B) = 0, e.g.

B =




0 1 2 1
0 1 1

0 1
0


 .

Note τ2 = 0 with this matrix due to Pf (B) = 0. One should also note that the generic
skew-symmetric B-matrix having all nonzero entries gives a two A-soliton solution of T-type
(having a resonant hole), but it is not a solution of the KP equation. In this case, since those
solitons are A-solitons, the function v+v− = τ2/τ

2
1 appears only locally in the x–y plane.

Both τ -functions for T-type two soliton solutions of the KP and DKP equations have six
independent exponentials, i.e. Ei,j for 1 � i < j � 4, which is the key to produce a T-type
resonant interaction of two A-solitons (see also [2, 8]).

Example 3.1. Consider [1, 2 : 3, 4]-D-soliton which corresponds to the B-matrix having
nonzero entries at (1, 2) and (3, 4), i.e. B = J0 in (2.1):

(a) [1 : 3]- and [2 : 4]-A-solitons (TD-type) by putting +1 at the entries (1, 4) and (2, 3).
(b) [1 : 4]- and [2 : 3]-A-solitons (P-type) by putting +1 at the entries (1, 3) and (2, 4).

Note that the TD-type in the case (a) is not the same as that of the KP-solitons, i.e. there is no
resonance in this case. Original T-type of two A-solitons is obtained by the B-matrix having
all nonzero entries and Det(B) = 0. Again there are three types of two A-solitons for DKP.
These types play an important role for the classification problem as a building block. Figure 3
shows the diagrams of the three fundamental types of two A-solitons. The middle diagrams
of 8-gon connect the types with the corresponding B-matrices as follows: we have nonzero
bi,j if the pair (i, j) is connected in the diagram, and a corresponding A-soliton of [k : l] is
given by the pair (k, l) having no connection in the diagram. Also note that the corresponding
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Figure 3. Three fundamental types of two A-solitons obtained from D-soliton. Each diagram
provides the relation between B-matrix and the corresponding two-soliton solution, i.e. bi,j �= 0 if
and only if the pair (i, j) is directly connected in the middle diagram, and [k : l]-soliton implies
that the pair (k, l) has no direct connection. For example, in the O-type, two A-solitons are labelled
[1 : 2] and [3 : 4], then we have the middle diagram to show the connections between the numbers
in the pairs, i.e. (1, 2) and (3, 4) are not connected. This diagram implies we have nonzero elements
b1,3, b1,4, b2,3 and b2,4.

P-type

[1:4]

[2:3]

O-type

[3:4]

[1:2]

T-type

[1:3]

[2:4]

[2:3] [1:4]

[1:2]

[3:4]

Figure 4. Three fundamental types of two A-solitons. Those solutions have the same topological
feature as the two-soliton solutions of the KP equation (see also figure 3 in [8]). The difference
between those solutions appears as the existence of localized solutions v± (if v+v− = 0, then the
DKP solution is also the KP solution). However, note that the TD-type in figure 3 does not have
a resonant quadrangle. The figures show the counter plots of the function w = (ln τ)x in the x–y

plane for a fixed t, and the contrast of the shades shows the different values of w which increases
in the positive x-direction.

B-matrix for O-type is not in the generic one given in (2.2), but in (2.3) (compare this with the
O-type of KP-solitons which belong to a Schubert cell of codimension 1 [8]). Figure 4 shows
those types of two A-solitons which are the same as two-soliton solutions of the KP equation
(note here that we have set τ2 = 0 for all the types, i.e. τ1 gives a solution of the KP equation).
The parameters are chosen as p = (−2,−1, 0, 3), and the velocities of solitons can be found
from figure 1.

4. Solitons generated by 8 × 8 B-matrices

Since each D-soliton has four phases, we need eight phases to describe a two D-soliton
solution. The τ2-function in the case with the 8 × 8 B-matrix is given by

τ2 =
∑

1�i1<···<i4�8

Pf(B(i1, . . . , i4))	(i1, . . . , i4) exp

(
4∑

k=1

θik

)
,
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where 	(i1, . . . , i4) = ∏
1�j<k�4

(
pij − pik

)
> 0, and the Pfaffian is calculated as

Pf(B(i1, . . . , i4)) = bi1,i2bi3,i4 − bi1,i3bi2,i4 + bi1,i4bi2,i3 .

Let us now construct the B-matrices for two D-soliton solutions which consist of only
four nonzero entries in the upper-triangular parts. We follow the steps:

(1) Take four pairs (ik, jk), k = 1, . . . , 4 with ik < jk from the set {1, . . . , 8}, such that

1 = i1 < i2 < · · · < i4, jk �= jl, (k �= l).

There are (2×4−1)!! = 105 ways to make those pairs (compare this with (n−, n+) in the
case of four A-solitons [8]). Those four pairs give four nonzero elements in the B-matrix,
i.e. (ik, jk) ≡ bik,jk

for k = 1, . . . , 4.
(2) Determine the signs of each pairs (ik, jk), so that all the Pfaffians in the expansion of τ2

associated with the B-matrix have the same sign. Since the pairs (ik, jk) are all different,
each Pfaffian has just one term, denoted by Pf((i, j), (k, l)) = ±bi,j bk,l . Here the sign
depends on the pairs, for examples,

Pf((1, 3), (5, 7)) = b1,3b5,7, Pf((2, 6), (4, 8)) = −b2,6b4,8.

In order to determine the sign of the Pfaffian Pf((i, j), (k, l)) = ±bi,j bk,l , we define the
following:

Definition 4.1. We say that the pairs (ij , ik) and (il, im) with ij < il have a partial overlap, if
ij < il < ik < im. Otherwise, we say that the pairs have a non-partial overlap (i.e., total or
no overlap). Let us introduce the sign of overlap between (ik, jk) and (il, jl),

σkl =
{− if ik < il < jk < jl (partial overlap),

+ otherwise.

Then we have Pf((ik, jk), (il, jl)) = σklbik,jk
bil ,jl

.

Now we have the following:

Lemma 4.1. Suppose that the signs σkl satisfy

σ12σ13σ14 = σ12σ23σ24 = σ13σ23σ34 = σ14σ24σ34.

Then one can make the τ -function τ2 to be sign definite, that is, all Pf(B(i1, . . . , i4)) take the
same sign.

Proof. We denote εk = sgn(ik, jk), so that sgn(Pf((ik, jk)(il, jl))) = σklεkεl . The condition
that all the terms have the same sign requires

σklεkεl = σk′l′εk′εl′ ,

for any k, l and k′, l′. This leads to σ12σ34 = σ13σ24 = σ14σ23 which gives the assertion. �

Applying the lemma, one can prove the following:

Proposition 4.1. Let i = (i1, . . . , i4) and j = (j1, . . . , j4). Then there exist 33 cases of
sign-definite τ -functions whose B-matrices have nonzero entries only at (ik, jk) and (jk, ik)

for k = 1, . . . , 4. Those cases are given by

(a) For i = (1, 2, 3, 4), there are eight cases with j = (j1, . . . , j4);

(5, 6, 7, 8), (5, 8, 7, 6), (6, 5, 8, 7), (6, 7, 8, 5),

(7, 8, 5, 6), (7, 6, 5, 8), (8, 5, 6, 7), (8, 7, 6, 5).
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(b) For i = (1, 2, 3, 5), there are four cases,

(4, 7, 6, 8), (4, 7, 8, 6), (6, 7, 4, 8), (8, 7, 4, 6).

(c) For i = (1, 2, 3, 6), there are four cases,

(4, 5, 8, 7), (5, 4, 7, 8), (7, 4, 5, 8), (8, 5, 4, 7).

(d) For i = (1, 2, 4, 5), there are four cases,

(3, 8, 6, 7), (3, 6, 8, 7), (6, 3, 7, 8), (8, 3, 7, 6).

(e) For i = (1, 2, 4, 6), there is one case, (8, 3, 5, 7).
(f) For i = (1, 2, 3, 7), there are two cases, (4, 5, 6, 8), (6, 5, 4, 8).
(g) For i = (1, 3, 4, 5), there are two cases, (2, 6, 7, 8), (2, 8, 7, 6).
(h) For i = (1, 2, 4, 7), there is one case, (6, 3, 5, 8).
(i) For i = (1, 3, 4, 6), there is one case, (2, 8, 5, 7).
(j) For i = (1, 2, 5, 6), there are two cases, (3, 4, 7, 8), (4, 3, 8, 7).
(k) For i = (1, 2, 5, 7), there is one case, (4, 3, 6, 8).
(l) For i = (1, 3, 5, 6), there is one case, (2, 4, 8, 7).

(m) For i = (1, 3, 4, 7), there is one case, (2, 6, 5, 8).
(n) For i = (1, 3, 5, 7), there is one case, (2, 4, 6, 8).

The case (n) corresponds to the B-matrix B = J0 defined in (2.1), and the B-matrices for
other cases can be expressed as B = Jπ := πJ0π

T for some π ∈ S8 with appropriate signs in
the entries of π . Those signs are determined so that the τ -function is non-singular.

4.1. Two and three D-solitons

We now classify D-solitons given by the τ -functions associated with the B-matrices obtained
in proposition 4.1. We obtain the following:

Theorem 4.2. Suppose we have the order, (i1, j1) < (i2, j2) < (i3, j3) < (i4, j4) with
(ik, jk) := pik + pjk

. Then as a generic situation, the D-soliton solutions of the DKP equation
turns out to be the following two cases:

(i) two D-solitons of [i1, j1 : i3, j3], [i2, j2 : i4, j4] or [i1, j1 : i4, j4], [i2, j2 : i3, j3],
(ii) three D-solitons of [ik, jk : iα, jα], [il, jl : iα, jα] and [im, jm : iα, jα] for α = 2 or 3

(α, k, l,m are all distinct).

Proof. First we note that each τ2-function associated with the B-matrix given in proposition 4.1
has six exponential terms. We denote them as ÊkÊl for 1 � k < l � 4, where
Êk := Eik,jk

= exp
((

pik + pjk

)
x +

(
p2

ik
+ p2

jk

)
y + θ0

k

)
for a fixed t. To identify two

dominant exponents which determine an asymptotic D-soliton, we set x = cy and define
ui,j := (pi +pj )c +p2

i +p2
j (see section 3). Then for large |y|, the velocity c of the asymptotic

soliton can be given by the intersection point of uik,jk
= uil ,jl

, where as a generic situation only
two exponential terms become dominant, say ÊkÊm and ÊlÊm (see also [2] for the details, and
figure 5). The soliton is then identified as [ik, jk : il, jl]. Then there are two cases where the
number of solitons, i.e. the number of balancing pairs of dominant exponentials, is either two
or three. To show this, we consider, for example, the case with i = (1, 2, 3, 4), j = (5, 6, 7, 8).
We set the parameter p so that p

(1)
1 < p

(1)
2 < p

(1)
3 < p

(1)
4 with p

(1)
k := pik + pjk

. Keeping this
order, one can choose p, so that we have p

(2)
4 < p

(2)
3 < p

(2)
2 < p

(2)
1 with p

(2)
k := p2

ik
+ p2

jk
.

(This can be done with a large negative value for p1 and a small positive p8.) Then it is easy
to see from the graph of uk := uik,jk

that one can have either two D-solitons of [i1, j1 : i3, j3]



4076 Y Kodama and K-I Maruno

-40 -20 0 20 40
-10

0

10

20

30

-100 -50 0 50 100

-20

-10

0

10

20

30

40

50

[14:58]

[14:27]

[27:36]

[27:58] [14:36]

[36:58]

[14:27]

[27:58]

[27:36]

[14:58]

[14:36]
[36:58]

-10 -5 5 10

-25

50

100

-10 -5 5 10

50

100

150

u14 u14

u36

u58

u27 u27

u36

u58

[27:36]
[27:36]

[14:58]

[27:58]

[14:27]

Figure 5. Two and three D-solitons associated with i = (1, 2, 3, 5) and j = (4, 7, 6, 8). The
left figure shows two D-solitons with p = (−3,−2, 1, 2, 3, 4, 5, 6). The right one shows three
D-solitons with the same parameters except p8 = 8. The bottom figures show the graphs of
ui,j (c) = (pi + pj )c + p2

i + p2
j . The dots in the graphs show the dominant two exponential terms,

which determine the asymptotic D-solitons. The squares correspond to the intermediate D-solitons
forming the resonant quadrangle, and the triangles correspond to the resonant intermediate solitons
from the pairs of three asymptotic solitons as shown in the top figures.

and [i2, j2 : i4, j4] or three D-solitons of [i1, j1 : i3, j3], [i2, j2 : i3, j3] and [i3, j3 : i4, j4].
The parameters p = (p1, . . . , p8) can take the same values except p8 for both cases (figure 5
gives an example for this, also see below).

One can also make a different order for p
(2)
k , e.g. p

(2)
3 < p

(2)
2 < p

(2)
1 < p

(2)
4 (by taking

large positive p8). Then one can have three D-solitons of [i1, j1 : i2, j2], [i2, j2 : i3, j3] and
[i2, j2 : i4, j4] with the velocities c2,4 < c1,2 < c2,3, where ck,l is the velocity of [ik, jk : il, jl]-
soliton (recall that those are given by the intersection uk = ul with uk = uik,jk

).
Thus there is a freedom in the ordering of p

(2)
k , and this is a key to generate three D-solitons

(compare with the case for the KP equation [2, 8] where we have only two A-solitons for six
exponential terms in the τ -function).

In figure 5, we illustrate the case of i = (1, 2, 3, 5) and j = (4, 7, 6, 8): here the ordering
is (1, 4) < (2, 7) < (3, 6) < (5, 8). Then depending on the parameters pk’s, the number
of asymptotic D-solitons is either two or three. The left (right) figure shows the case of two
(three) D-solitons, i.e. there are two (three) values of c where two exponential terms become
dominant. It is obvious that there is no case other than those two in the general case. �

We note here that all cases in proposition 4.1 have two D-soliton solutions, but only some
cases can have three D-soliton solutions. In particular, we have the following:

Proposition 4.2. The case (n) in proposition 4.1 can have only two D-soliton solutions of
[1, 2 : 5, 6] and [3, 4 : 7, 8].
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u4

u1

u2

u3

c

c1,2c1,4 c1,3

Figure 6. The qualitative graphs of the functions uk(c) = (p2k−1 + p2k)c + p2
2k−1 + p2

2k for the
case (n) in proposition 4.1 which states, e.g. c1,4 < c1,3 < c1,2. The open circles correspond to
two D-solitons of [1, 2 : 5, 6] with the velocity c1,3 and [3, 4 : 7, 8] with c2,4.

In order to prove the proposition, we prepare the following lemma: let us first denote
uik,jk

as uk as before

uk(c) := (
pik + pjk

)
c + p2

ik
+ p2

jk
, k = 1, . . . , 4,

where (ik, jk) = (2k − 1, 2k) for the B-matrix of the case (n), i.e. B = J0. Then we have the
following:

Lemma 4.2. Let cj,k be the point of intersection given by uj (c) = uk(c). Then for a fixed
index α ∈ {1, . . . , 4}, we have

cα,k < cα,j < cα,i , for i < j < k, α �= i, j, k.

Proof. From uk(c) = uj (c), we have

cj,k = −
(
p2

2j−1 + p2
2j

) − (
p2

2k−1 + p2
2k

)
(p2j−1 + p2j ) − (p2k−1 + p2k)

.

Let us write p2k−1 and p2k as

p2k−1 = Pk − 	k, p2k = Pk + 	k,

that is, Pk = 1
2 (p2k−1 + p2k), and we have

cj,k = −(Pj + Pk) − 	2
j − 	2

k

Pj − Pk

.

Suppose α < j < k (other cases follow the similar argument). Then we have

cα,j − cα,k = Pk − Pj +
	2

α − 	2
k

Pα − Pk

− 	2
α − 	2

j

Pα − Pj

.

It is then easy to show cα,j − cα,k > 0. �

Now we give a proof of proposition 4.2.

Proof. From lemma 4.2, we have the order c1,2 < c1,3 < c1,4. Also note that the slope of
uk(c) is given by p2k−1 + p2k =: p

(1)
k , hence p

(1)
1 < p

(1)
2 < p

(1)
3 < p

(1)
4 . Then we obtain

qualitative graphs of uk as shown in figure 6, and from the graphs we can find the dominant
pairs of the exponential terms in τ2 for y → ±∞. This shows that the dominant pairs are
given by (Ê1Ê4, Ê3Ê4) and (Ê1Ê4, Ê1Ê2) for y → ∞, and (Ê1Ê2, Ê2Ê3) and (Ê2Ê3, Ê3Ê4)

for y → −∞. This implies that we have two D-solitons of [1, 2 : 5, 6] and [3, 4 : 7, 8] (recall
Êk = E2k−1,2k). This completes the proof. �
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Figure 7. The graphs of uk(c) = (pk + p9−k)c + p2
k + p2

9−k for k = 1, . . . , 4. The indices are
marked by (ik, jk) = (k, 9 − k) for k = 1, . . . , 4. The left figure shows two D-soliton solutions of
[1, 8 : 4, 5] and [2, 7 : 3, 6] with p = (−5, −4,−2,−1, 0, 3, 3.5, 7), and the right one shows three
D-solitons of [1, 8 : 2, 7], [2, 7 : 3, 6] and [2, 7 : 4, 5] with p = (−5,−3.5,−2,−1, 0, 3, 4, 7).
Note that only p2 is changed.

[i1,j1:i4,j4]

[i3,j3:i4,j4]

[i1,j1:i3,j3]

[i2,j2:i3,j3]

[i2,j2:i4,j4]

[i1,j1:i2,j2]

[i1,j1:i4,j4]

[i2,j2:i3,j3]

[i1,j1:i3,j3]

[i2,j2:i4,j4]

[i1,j1:i2,j2][i3,j3:i4,j4]

Figure 8. Interaction patterns for two and three D-solitons in figure 7. The function w = (ln τ2)x
takes the values, w → (i1, j1, i2, j2) as x → −∞, and w → (i3, j3, i4, j4) as x → ∞. All six
D-solitons in each figure can be identified as the six intersection points of the graphs uk := uik,jk

in figure 7.

We also have the following:

Proposition 4.3. The case with i = (1, 2, 3, 4) and j = (8, 7, 6, 5) (one of the cases in (a) of
proposition 4.1) can have both two and three D-solitons.

Proof. Follow the argument in the proof of theorem 4.2. Also see the following examples:

(i) For two D-solitons, we take p := (p1, p2, . . . , p8) = (−5,−4,−2,−1, 0, 3, 3.5, 7).
Then the open circles in the left figure in figure 7 show the dominant exponentials which
correspond to the D-solitons of [i1, j1 : i4, j4] = [1, 8 : 4, 5] and [i2, j2 : i3, j3] = [2, 7 :
3, 6].

(ii) For three D-solitons, we take p = (−5,−3.5,−2,−1, 0, 3, 4, 7). The three open circles
in the right figure in figure 7 correspond to the two D-solitons of [i1, j1 : i2, j2] = [1, 8 :
2, 7], [i2, j2 : i3, j3] = [2, 7 : 3, 6] and [i2, j2 : i4, j4] = [2, 7 : 4, 5].

In figure 8, we show the interaction patterns for those cases shown in figure 7 (they are
topologically the same as in figure 5). �

In section 5, we will extend propositions 4.2 and 4.3 to the general cases as
propositions 5.1 and 5.2.

Recall that a D-soliton can be identified as an element of the Weyl group of D-type,
WD . In the case of two D-solitons, we have, for example, π1,3 : (i1, j1) ↔ (i3, j3) and
π2,4 : (i2, j2) ↔ (i4, j4). The group generated by those elements is an Abelian subgroup
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of WD , and the orbit of this subgroup of (i1, j1, i2, j2) represents the asymptotic regions
divided by the solitons, i.e. (i1, j1, i2, j2), (i1, j1, i4, j4), (i2, j2, i3, j3) and (i3, j3, i4, j4),
which correspond to the dominant exponentials in the τ -function, that is, Ê1Ê2, Ê1Ê4, Ê2Ê3

and Ê3Ê4, respectively. In the τ -function, we have two more exponential terms labelled by
(i1, j1, i3, j3) and (i2, j2, i4, j4), i.e. Ê1Ê3 and Ê2Ê4. Those terms become dominant at the
points of the resonant quadrangle as in the case of two A-solitons of T-type. Namely, we have
a resonant two D-soliton. The resonant condition is given by, for example,{

k[i1, j1 : i3, j3] + k[i3, j3 : i4, j4] = k[i1, j1 : i4, j4]

ω[i1, j1 : i3, j3] + ω[i3, j3 : i4, j4] = ω[i1, j1 : i4, j4].

In the case of three D-soliton, for example [i1, j1 : i2, j2], [i2, j2 : i3, j3] and [i2, j2 : i4, j4],
we have π1,2, π2,3 and π2,4 as the generating elements of the subgroup. Then the subgroup
contains π1,3, π1,4 and π3,4, and those are the D-solitons generated by the resonances of pairs,
i.e. πk,l represents D-soliton of [ik, jk : il, jl]. Each resonant relation can be represented by
the product πi,2 · π2,j = πi,j .

For any two D-soliton solution in proposition 4.1, we have the following:

Proposition 4.4. Two D-solitons constructed above are all in resonance, in the sense that
there is a resonant quadrangle at the intersection point. Namely all the cases are of T-type
with one hole.

Proof. First note that there are six exponential terms in the τ -function. Each exponential term
becomes dominant in some region in the x–y plane. For example, consider two D-solitons
with [1, 2 : 5, 6] and [3, 4 : 7, 8]. Then the function w = (ln τ2)x takes w → (1, 2, 3, 4)

for x → −∞, and w → (5, 6, 7, 8) for x → ∞. With those D-solitons, we have the
regions marked by (1, 2, 7, 8) and (3, 4, 5, 6). In addition to those exponentials, we also
have (1, 2, 5, 6) and (3, 4, 7, 8). As in the case of two solitons of the KP equation (see [2]),
a resonant interaction of Y-shape can occur. For example, [1, 2 : 5, 6], [1, 2 : 7, 8] and
[5, 6 : 7, 8] solitons are in resonant, and the three regions divided by those solitons are marked
by (1, 2, 3, 4), (3, 4, 5, 6) and (3, 4, 7, 8). Then the six exponentials in the τ -function form
two D-solitons in resonance (see the left figure in figure 8). �

Remark 4.3. In figure 8 of [5], Isojima et al presented an example of (two) D-solitons
which seems to have only one intermediate soliton (no resonant quadrangle). However,
it turns out that this is not two D-solitons: first we note that this is the case (k) in
proposition 4.1, i.e. i = (1, 2, 5, 7) and j = (4, 3, 6, 8). This can be found by ordering
the parameters (p1, . . . , p4, q1, . . . , q4) in figure 8 of [5], i.e. relabel (p1, . . . , q4) in terms
of our ordering (p1, . . . , p8) with p1 → p8, p2 → p7, p3 → p4, p4 → p1, q1 →
p6, q2 → p5, q3 → p3 and q4 → p2. The parameters chosen in the paper is then given by
p = (− 3

2 ,− 4
3 ,− 2

3 ,− 1
2 , 1

2 , 2
3 , 3

2 , 3
)
. With those parameters, we note that p1 + p4 =: (1, 4) =

(2, 3) =: p2 +p3, a degeneracy in the parameters. Two D-solitons are given by [1, 4 : 5, 6] and
[2, 3 : 7, 8], and the asymptotic values of w are (1, 2, 3, 4) and (5, 6, 7, 8) for x → ∓∞. Then
the resonant quadrangle consists of the D-solitons of [1, 4 : 2, 3], [1, 4 : 7, 8], [2, 3 : 5, 6]
and [5, 6 : 7, 8]. However, because of the degeneracy (1, 4) = (2, 3), the [1, 4 : 2, 3]-soliton
cannot exist, i.e. the function w cannot change the value across this soliton. Also note that
the [2, 3 : 5, 6]- and [1, 4 : 5, 6]-solitons are almost parallel, and so are the [1, 4 : 7, 8]- and
[2, 3 : 7, 8]-solitons: For example, the peak of the soliton [2, 3 : 5, 6] is given by θ2,3 = θ5,6,
i.e. for a fixed t and with the values of p, we have the line for [2, 3 : 5, 6]-soliton,

(p5 + p6 − p2 − p3)x +
(
p2

5 + p2
6 − p2

2 − p2
3

)
y = 57

18

(
x − 55

114
y

)
= const
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which is almost parallel to the line θ1,4 = θ5,6 for the [1, 4 : 5, 6]-soliton,

(p5 + p6 − p1 − p4)x +
(
p2

5 + p2
6 − p2

1 − p2
4

)
y = 57

18

(
x − 65

114
y

)
= const.

Thus the soliton solution in figure 8 of [5] consists of two D-solitons of [1, 4 : 5, 6] and
[2, 3 : 7, 8] for y → ∞ and two other D-solitons of [2, 3 : 5, 6] and [1, 4 : 7, 8] for
y → −∞, and the intermediate soliton is the [5, 6 : 7, 8]-soliton. Another intermediate
soliton of [1, 4 : 2, 3] may be considered to be located at y = −∞.

For any three D-soliton solutions in proposition 4.1, we have the following:

Proposition 4.5. Any pair of three D-solitons constructed above is in resonance to form a
Y-shape vertex. This three D-soliton solution has no resonant hole and four resonant Y-shape
vertices.

Proof. Since there are six exponential terms which mark the six separated regions in the x–y

plane bounded by those three solitons, this three-soliton solution cannot have a resonant hole.
Three solitons are labelled by, for example, [i1, j1 : i2, j2], [i2, j2 : i3, j3] and [i2, j2 : i4, j4],
and any pair of those solitons is in resonance, i.e. [i1, j1 : i2, j2] and [i2, j2 : i3, j3] have a
resonant interaction to generate [i1, j1; i3, j3]-soliton (see the right figure in figure 8). It is
easy to see that this resonance appears for any three solitons obtained in proposition 4.1. �

4.2. Three soliton solutions consisting of two A-solitons and one D-soliton

Since one D-soliton is a degenerate two A-solitons, one can construct three soliton solutions
consisting of two A-solitons and one D-soliton from two D-solitons. One should note that
resolution of one D-soliton into two A-solitons can work only for the case of two D-solitons.
In the case of three D-solitons, the resolution of one D-soliton affects other D-solitons, and
it cannot produce two A-solitons. This can be checked by the asymptotic analysis using the
graphs of ui,j .

Example 4.4. Consider two D-solitons corresponding to the B-matrix of the case (n) in
proposition 4.1, i.e. i = (1, 3, 5, 7) and j = (2, 4, 6, 8). Two D-solitons are [1, 2 : 5, 6] and
[3, 4 : 7, 8]. Then, for example, two A-solitons of types [1 : 5] and [2 : 6] are obtained
by adding two extra nonzero elements at (1, 6) and (2, 5). This fact can be verified easily
from the diagram of T-type (up-side-down staircase with sides labelled by 1, 2, 5 and 6; see
figure 3). The three solitons obtained here has only one hole (see figure 9).

One can also get two A-solitons of [1 : 6] and [2 : 5] from [1, 2 : 5, 6]-soliton by adding
two nonzero elements at (1, 5) and (2, 6). Note that those two A-solitons form the diagram of
P-type (cannon shape with sides by 1,2,5 and 6; see figure 3).

In the same way, one can resolve [3, 4 : 7, 8]-solitons into either the pair of [3 : 7] and
[4 : 8] or the pair of [3 : 8] and [4 : 7], by adding extra nonzero entries to the B-matrix of the
case (n).

4.3. Four A-soliton solutions from D-solitons

Those solitons can be constructed in the similar way as the case of three solitons (two A-
solitons and one D-soliton) from two D-solitons. However, the compatibility among those
A-solitons separated from D-solitons is somewhat complicated. For example, one can expect
that two D-solitons, [1, 2 : 5, 6] and [3, 4 : 7, 8], generate two A-solitons [1 : 5], [2 : 6] from
[1, 2 : 5, 6] and other two A-solitons [3 : 7] and [4 : 8] from [3, 4 : 7, 8]. The B-matrices for
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Figure 9. Bifurcation of two D-solitons into three solitons with two A-solitons and one D-soliton.
The [1, 2 : 5, 6]-D-soliton resolves into two A-solitons of [1 : 5] and [2 : 6]. D-solitons are
expressed as the double lines joined with the double circles.

three solitons [1 : 5], [2 : 6], [3, 4 : 7, 8] and [1, 2 : 5, 6], [3 : 7], [4 : 8] may be respectively
given by


0 1 0 0 0 1 0 0
0 0 0 1 0 0 0

0 1 0 0 0 0
0 0 0 0 0

0 1 0 0
0 0 0

0 1
0




and




0 1 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 0 0 0 1
0 0 0 1 0

0 1 0 0
0 0 0

0 1
0




.

Then adding b3,8, b4,7 to the B-matrix in the left (or b1,6, b2,5 to the right one), the resulting
B-matrix is expected to give four A-solitons [1 : 5], [2 : 6], [3 : 7] and [4 : 8]. However this
matrix gives a singular solution, and a correct B-matrix for this four-soliton solution may be
given by 



0 1 0 0 0 0 0 1
0 1 0 0 0 0 0

0 1 0 0 0 0
0 1 0 0 0

0 1 0 0
0 1 0

0 1
0




.

Thus in this case we do not have a compatibility between the two sets of three solitons obtained
from the D-solitons (in the sense that the τ -function cannot stay to be sign definite). A general
rule to construct a B-matrix for four A-solitons from two D-solitons seems to be complicated.
Here we give a direct way to construct a B-matrix for a given four A-solitons, based on the
B-matrices obtained in proposition 4.1:
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(1) Give four A-solitons labelled by a pair of four numbers, i.e.

n− = (
n−

1 , . . . , n−
4

)
, n+ = (

n+
1, . . . , n

+
4

)
where 1 = n−

1 < · · · < n−
4 and n−

i < n+
i . Then each soliton is labelled by [n−

k : n+
k ] for

k = 1, . . . , 4 (the same as in the KP solitons [8]). This implies that the asymptotic values
of w = (ln τ)x are given by

∑4
k=1 pn±

k
for x → ±∞.

(2) Take a pair of two solitons, say
[
n−

i : n+
i

]
and

[
n−

j : n+
j

]
, and draw the corresponding

diagrams shown in figure 3, and do the same for the other pair. Here the choice of the pair
should be consistent with the asymptotic values. Then adjust the signs for each horizontal
edges of the diagrams, so that all the Pfaffians have the same sign. If all are satisfied, then
the diagrams give the B-matrix.

Example. Consider four solitons with [1 : 2], [7 : 8] and any other two solitons with the
indices from {3, 4, 5, 6}. Then one can construct the B-matrix as follows:

The diagram corresponding to [1 : 2], [7 : 8] is a backward C-shape (P-type shown in
figure 3), having 1, 2, 7 and 8 on the vertical edge. This implies we have nonzero elements for
b1,7, b1,8, b2,7, b2,8. Now if the other pair is [3 : 6], [4 : 5], then the diagram associated with
this is a cannon shape (O-type) having 3, 4, 5, 6 on the vertical edges. This gives the nonzero
entries b3,4, b3,5, b4,6, b5,6. In this example, all those entries in the upper-triangular part can
take +1 for a sign-definite τ -function. Namely, we have

B =




0 0 0 0 0 0 1 1
0 0 0 0 0 1 1

0 1 1 0 0 0
0 0 1 0 0

0 1 0 0
0 0 0

0 0
0




. (4.1)

In the case of two solitons of T-type, [3 : 5], [4 : 6], one can use the B-matrix having the same
entries except b3,5 = 2, and in addition b3,6 = 1, b4,5 = 1.

Note that the nonzero entries have two groups corresponding to two D-solitons [1, 7 : 2, 8]
and [3, 4 : 5, 6], and those groups have no partial overlaps. This structure is true for any cases
satisfying the non-singular condition, i.e. all the Pfaffians have the same sign. (Recall that the
B-matrix with b1,8 = b2,7 = b3,4 = b5,6 = 1, i.e. i = (1, 2, 3, 5), j = (8, 7, 4, 6), also gives
three D-solitons of [1, 8 : 2, 7], [2, 7 : 3, 4] and [2, 7 : 5, 6].)

For the same four solitons as the previous example, i.e. [1 : 2], [3 : 6], [4 : 5] and [7 : 8],
one can also have the following B-matrix which gives the same τ2 function,

B =




0 0 0 1 1 0 0 0
0 0 1 1 0 0 0

0 0 0 0 −1 −1
0 0 0 0 0

0 0 0 0
0 1 1

0 0
0




. (4.2)

This matrix can be constructed from the B-matrix for i = (1, 2, 3, 6) and j = (5, 4, 7, 8), the
case (c) in proposition 4.1, (i.e., this gives two D-solitons with [1, 5 : 2, 4] and [3, 7 : 6, 8]).
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Figure 10. Four A-solitons obtained from the B-matrix of two D-solitons or three D-solitons.
Two D-solitons in (a) is given by the B-matrix with i = (1, 2, 3, 6) and j = (5, 4, 7, 8). Three
D-solitons in (b) is given by the B-matrix with i = (1, 2, 3, 5) and j = (8, 7, 4, 6). Both the cases
have the same p = (−4, −3,−2,−1, 1, 3, 4, 6). The four A-soliton solution in (c) is given by the
B-matrix (4.1). Note that the B-matrix of (4.2) gives the same solution.
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Figure 11. The four solutions in the right figure is obtained from the B-matrices given by (4.3). The
left figure shows two D-solitons obtained by the same matrix except b1,7 = 0, b2,8 = 0, b3,5 = 0
and b4,6 = 0 (note the extra resonant structure at the intersection region of those D-solitons.

In figure 10, we show the example of four A-solitons based on two B-matrices: the case
(a) corresponds to the B-matrix for i = (1, 2, 3, 6), j = (5, 4, 7, 8), and the case (b) for
i = (1, 2, 3, 5), j = (8, 7, 4, 6). We take p = (−4,−3,−2,−1, 1, 3, 4, 6) for both cases.

As an example of four A-solitons, we consider the case with [1 : 7], [2 : 8], [3 : 5] and
[4 : 6], i.e. there are two partial overlaps (two solitons of T-type). We first note that this
set of four solitons can be split into two groups of two solitons having no partial overlaps,
{[1 : 7], [2 : 8]} and {[3 : 5], [4 : 6]}. Since they are both TD-type, we have the TD-type
diagram (up-side-down staircase). This implies we have nonzero entries b1,8, b1,2, b2,7, b7,8

from the set {[1 : 7], [2 : 8]}, and b3,4, b3,6, b4,5, b5,6 from the second set. However, this
B-matrix does not give the four solitons. In figure 11, the left figure shows the solution
given by this B-matrix, two D-solitons, [1, 2 : 5, 6] and [3, 4 : 7, 8] with some additional
resonances at the intersection region of those solitons. This can be explained as follows:
this B-matrix can be considered as a deformation (bifurcation) from the B-matrix of two
D-solitons, [1, 2 : 5, 6] and [3, 4 : 7, 8], and the τ -function with this B-matrix gives resonant
D-solitons, [1, 2 : 3, 4], [1, 2 : 7, 8], [3, 4 : 5, 6] and [5, 6 : 7, 8]. Then TD-type of two
solitons [1 : 7], [2 : 8] is obtained from the bifurcation of [1, 2 : 7, 8]-soliton, which is
one of the resonant solitons. Also note that the exponentials associated with (1, 2, 7, 8)
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and (3, 4, 5, 6) become dominant for two D-solitons for either y → ∞ or y → −∞.
However, those exponentials should not appear for this set of four A-solitons, that is, those four
A-solitons cannot be obtained from this B-matrix. This can be fixed by taking the following
B-matrix (i.e., change TD-type to T-type),

B =




0 1 0 0 0 0 2 1
0 0 0 0 0 1 1

0 1 2 1 0 0
0 1 1 0 0

0 1 0 0
0 0 0

0 1
0




. (4.3)

In figure 11, the right figure shows the four solitons generated by this B-matrix.
We also mention that the τ2-function with the generic 8 × 8 B-matrix having all nonzero

entries gives four A-solitons of T-type, that is, they are the same type of the four-soliton
solution of the KP equation. Just note that the number of exponential terms in τ2 is

(8
4

) = 70,
which is the same as the τ -function for the KP equation (see [2]). Then the asymptotic analysis
of the τ -functions shows that four A-solitons are given by [1 : 5], [2 : 6], [3 : 7] and [4 : 8],
which are of T-type. An example of the generic B-matrix for the non-singular τ -function is
given by the skew-symmetric matrix having 1’s in all the entries in the upper-triangular part.

5. Multi-soliton solutions

For the general case with arbitrary M = 4N , we consider the B-matrix with 2N numbers of
nonzero entries bik,jk

for k = 1, . . . , N and 1 = i1 < · · · < iN, ik < jk in the upper-triangular
part. Although there is a scheme to find the B-matrix for the sign definite τN (i.e., having
all the same sign in the Pfaffian coefficients), the generalization of proposition 4.1 seems to
be difficult. However, we can show the following propositions regarding to the number of
D-solitons for two special cases.

Proposition 5.1. The τN -function (1.2) with the 4N × 4N B-matrix given by J0 of (2.1) can
have only N D-solitons in the generic situation.

Proof. Apply lemma 4.2, and find the dominant exponentials by following the argument of
‘level of intersection’ introduced in [2] (the main idea here is to find the dominant exponents
from the graphs of ui,j (c)). �

The other case corresponds to the B-matrix, B = Jπ , where Jπ is defined by Jπ := πJ0π
T

with π ∈ S4N , the permutation given by π = [2 : 4N ] · [4 : 4N − 2] · · · [2N : 2N + 2], i.e.

Jπ =




0 0 · · · 0 0 · · · 0 1
0 · · · 0 0 · · · 1 0

. . .
...

...
...

...
...

0 1 · · · 0 0
0 · · · 0 0

. . .
...

...

0 0
0




. (5.1)
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Figure 12. The graphs of uk(c) = (pk + p17−k)c + p2
k + p2

17−k for k = 1, . . . , 16. Each open
circle of the intersections of two functions uk corresponds to a D-soliton given by τ4. For example,
the point for u1 = u8 corresponds to the D-soliton of [1, 16 : 8, 9]. The number of open circles
depends on the choice of the parameter p = (p1, . . . , p16). Note that only u4 and later u6 are
changed to increase the number of solitons (see the text for the explicit values of p).

Then, we have the following:

Proposition 5.2. The number of D-solitons generated by the τN -function (1.2) with the
4N × 4N B-matrix given by Jπ of (5.1) can be any number from N to 2N − 1, depending on
the choice of the parameter p.

Here instead of giving a precise proof, we demonstrate a case with M = 16(N = 4):
in figure 12, we show the graphs of uk(c) = (pk + p17−k)c + p2

k + p2
17−k for k = 1, . . . , 8.

With a proper choice of the parameter p = (p1, . . . , p16), one can find four different cases of
intersection patterns of those lines. Then D-solitons can be found at the intersection points
marked by open circles in figure 12, that is, the level of intersection of those points should
be four (i.e., there are four lines above those points). For example, D-soliton [4, 13 : 5, 12]
is obtained by the intersection of u4 and u5, and two dominant exponents for this soliton are
Ê1Ê2Ê3Ê4 and Ê1Ê2Ê3Ê5 which are obtained from four lines above the intersection point
u4 = u5 (this is the definition of the level of intersection; see [2] for more details). We have
the following four cases:

(a) Four D-solitons (the top left figure) of [1, 16 : 8, 9], [2, 15 : 7, 10], [3, 14 : 6, 11] and
[4, 13 : 5, 12] with the parameter,

p = (−16,−14,−12.5,−11,−8.5,−6,−4,−2, 2, 5, 6, 9.5, 11.2, 13.5, 14, 17).

(b) Five D-solitons (the top right figure) of [1, 16 : 8, 9], [2, 15 : 4, 13], [3, 14 :
6, 11], [4, 13 : 5, 12] and [4, 13 : 7, 10] with

p = (−16,−14,−12.5,−11.6,−8.5,−6,−3,−2, 2, 4, 6, 9.5, 12, 13.5, 14, 17)

Note here that three D-solitons have the common index (4, 13). The [2, 15 : 7, 10]-
soliton in the case (a) causes the resonant interaction with two D-solitons [2, 15 : 4, 13]
and [4, 13 : 7, 10].
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(c) Six D-solitons (the bottom left figure) of [1, 16 : 4 : 13], [2, 15 : 4, 13], [3, 14 :
6, 11], [4, 13 : 5, 12], [4, 13 : 7, 10] and [4, 13 : 8, 9] with

p = (−16,−14,−12.5,−11,−8.5,−6,−4,−2, 2, 5, 6, 9.5, 11.5, 13.5, 14, 17).

(d) Seven D-solitons (the bottom right figure) of [k, 17 − k : 4, 13] for all k = 1, . . . , 8,
except k = 4, and

p = (−16,−14,−12.5,−11,−8.5,−7.5,−4,−2, 2, 5, 6, 9.5, 11.5, 13.5, 14, 17).

One should note that those p values do not give generic cases, since some of the lines uk(c) are
parallel as shown in figure 12. However, one can make those to be generic by changing slightly
the parameters pi’s without breaking the intersection patterns. (We show those non-generic
parameters, since they provide a clear evidence of the existence of those solitons.)

We also remark that all the N-soliton solutions obtained by τN with the B-matrix given
in proposition 5.1 are fully resonant cases like the T-type for the KP equation, that is, the τN

contains
(2N

N

)
exponential terms having the form

∏N
k=1 Êk = ∏N

k=1 Eik,jk
(see [2]).

Finally, we note that in the case of the generic B-matrix having all nonzero entries, the τN

function has the maximal number of exponential terms
(4N

2N

)
which has the same structure of

the τ -function for fully resonant 2N -soliton solutions (i.e., T-type) of the KP equation. Those
2N solitons are all A-type, and the interaction patterns are topologically the same for both KP
and DKP equations. In those cases, the functions v± appear only locally at the interaction
regions among 2N -solitons.
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